教师登录 English 返回首页
答辩公告
我的位置在: 首页 > 答辩公告 > 正文
ALBUKHAITI HESHAM答辩公告
浏览次数:威尼斯app下载:2020-09-29编辑:研究生教务办2

ALBUKHAITI HESHAM答辩公告

论文题目

Using Different Approaches For Identification And Investigation Diseases Based On Genetic Data

答辩人

ALBUKHAITI HESHAM

指导教师

Professor: Luo Jiawei

答辩委员会

主席

陈浩

学科专业

Computer Science & Technology

学院

College of computer science and Electronic Engineering

答辩地点

网络远程答辩

答辩时间

2020.10.5上午09:00-11:30

学位论文简介

 

The development of new approaches and algorithms is substantial to analyze the behavior of genes and of interactions between them.  Study of gene expression and the associated regulation mechanisms, is the challenge to obtaining an integrated analysis that reflects genetic activity in the organism. Describe the complex interactions among genes with nonlinear property and investigate genes, leads to important results contribute to know how the diseases formation. Transcription factors (TFs) and microRNAs (miRNAs) often are found together in a networks at the transcriptional and post-transcriptional level that is lead to a combinatorial and complex regulation of biological processes. We have applied three datasets of cancer are obtained from the TCGA project webpage, gastric cancer, breast cancer and thyroid. In this research, we proposed three methods to answer three main questions: - How to identification gastric cancer related genes from Deep Sequencing Data? - How to composition combinatorial regulatory network from TFs and microRNA factors? And - how to analyzing the complex interactions in biological networks based on based on the available biological tools?

For the first question, we proposed a method to measurement the nonlinear association distance between two random variables based on se the distance correlation. In addition to utilizing weighted gene Co-expression network analysis (WGCNA) of gene expression data. The significantly differentially expressed genes detected with the DESeq method are used to construct the co-expression network. For the second question, initially, we used the k-means cluster and ANOVA test to filtering and selection the significant genes. Then, the combinatorial regulatory network composed of TFs and miRNAs regulations is constructed through the forward engineering strategy to searching of TFs binding sites or miRNA seed regions in the putative target sequences. For the third question, we discussed in depth how create and  visualize the  biological network in Cytoscape based on  Nested network format (NNF) and the  Boolean Meta-Filter to search of subsets nodes or edges based on specific conditions. Then, we used the KeyPathwayMiner as heuristics method, to find pathways related to cancer disease and extract the sub-networks.

In the first approach with gastric genes, the results show some genes are enriched in some biological processes and pathways, including cell cycle, mitosis and chromosome segregation, DNA replication and p53 pathway. In addition to, the connectivity of all the genes appear the circumstance of loss in the gastric cancer network, especially to the absent genes. These results indicate that the activation of these genes may play important roles in the gastric cancer.  In the second approach, our gene regulatory network (GRN), uncovered some of the regulators like CREB1, E2F1, hsa-miR-106b, hsa-mir-200c AHR and ARNT that play significant roles in the regulation of cell proliferation, such as A549 cells. The combinatorial gene regulatory network included several of TFs and microRNA regulations, permitting the investigation and study in further from the genes that are related to cancer. We evaluated the gene networks for breast cancer and thyroid cancer, by computed the area under the receiver operating characteristic curve (AUC) and draw the ROC curve. We generated a ranking of regulatory relationship based on importance score of relationship. The AUC values are 0.95 and 0.91 for breast cancer and thyroid cancer networks respectively. In the third approach, our results found CCNB1, SP1 AHR and MIA3 genes participated in some biological processes related to cancerous diseases, such as DNA Replication, the secular response to stress, Postsynaptic density and Asymmetric synapse. Which indicated that these genes also had a role in the formation of cancerous diseases.

The main goal of this work aims to build a mathematical model that can contribute effectively to the detection of the genes involved in the formation of cancerous diseases. Also, this work contributes to enriching the subject of personalized medicine that is aiming for a therapeutic approach involving the use of an individual's genetic and epigenetic information to tailor drug therapy or preventive care.

 

主要学术成果

 

  1. Hesham Abdulatef Mohammed Al-bukhaiti, Jiawei Luo, Using differential nonlinear gene co-expression network for identification gastric cancer-related genes. Biomedical Research, 2017, 28(16), 1-4, (SCI).

     

  2. Hesham Abdulatef Mohammed Al-bukhaiti, Jiawei Luo, A hybrid approach to select and Combine Gene Expression Regulation based on cancer datasets, IOP Conference. Series: Materials Science and Engineering 2020, (EI Compendex)

 

XML 地图 | Sitemap 地图